Math 524 Exam 10 Solutions

1. Find all 2×2 complex matrices that are simultaneously diagonal, Hermitian, and unitary.

Let $A=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, a diagonal matrix with complex entries. Its eigenvalues are precisely a, b. Because A is Hermitian, they must be real. Because A is unitary, they must each be of absolute value 1 . There are exactly four matrices satisfying these conditions: $\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. They satisfy the requirements, since for each of them $A^{\dagger}=A^{T}=A=A^{-1}$.
2. Find all 2×2 real matrices that are simultaneously symmetric and orthogonal.

Let $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, a symmetric matrix with real entries. Because A is symmetric and orthogonal (much as in problem 1), the eigenvalues must each be 1 or -1 . Hence $|A|= \pm 1$. Consider first $|A|=1$. Then $\frac{1}{1}\left(\begin{array}{cc}c & -b \\ -b & a\end{array}\right)=A^{-1}=A^{\dagger}=$ $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. Hence $a=c, b=-b$; the only such matrices are $\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$. These two both satisfy the requirements, as in problem 1. Now consider $|A|=-1$. Then $\frac{1}{-1}\left(\begin{array}{cc}c & -b \\ -b & a\end{array}\right)=A^{-1}=A^{\dagger}=A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. Hence $a=-c$. $-1=|A|=-a^{2}-b^{2}$, so we can write $A=\left(\begin{array}{cc}\sin \theta & \cos \theta \\ \cos \theta & -\sin \theta\end{array}\right)$. This satisfies the requirements for every angle θ : it is obviously symmetric, and the columns (taken as vectors) are orthonormal hence the matrix is orthogonal.
Note: this includes the diagonal matrices from problem 1, for $\theta= \pm \pi / 2$.
3. Find all 2×2 complex matrices that are simultaneously anti-symmetric and unitary.

Let $A=\left(\begin{array}{cc}0 & a \\ -a & 0\end{array}\right)$, an anti-symmetric matrix with complex entries. (note: $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=-\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ yields $\left.a=d=0, b=-c\right)$. Since A is unitary, its eigenvalues must each be of unit length, hence $|A|=a^{2}$ must be of unit length, so $|a|=1$. We write $a=e^{i \theta}$; so $A=\left(\begin{array}{cc}0 \\ -e^{i \theta} & e^{i \theta} \\ 0\end{array}\right)$. For any θ, this satisfies the requirements: it is anti-symmetric by inspection, and unitary since the columns are orthonormal.
4. Find the maximum of $2 x^{2}+4 x y+5 y^{2}$ subject to $x^{2}+y^{2}=1$.

The quadratic function $f_{A}(x, y)=2 x^{2}+4 x y+5 y^{2}$ is $\langle x| A|y\rangle$, for $A=\left(\begin{array}{ll}2 & 2 \\ 2 & 5\end{array}\right)$. This has eigenvalues $1,6 . \lambda=1$ has eigenvector $\binom{2}{-1}$, which we divide by its length to satisfy the $x^{2}+y^{2}=1$ condition: $\frac{1}{\sqrt{5}}\binom{2}{-1}$. $\lambda=6$ has eigenvector $\binom{1}{2}$, which we divide by its length to satisfy the $x^{2}+y^{2}=1$ condition: $\frac{1}{\sqrt{5}}\binom{1}{2}$. By the methods show in the book, one of these must maximize our quadratic function. $f_{A}(2 / \sqrt{5},-1 / \sqrt{5})=1, f_{A}(1 / \sqrt{5}, 2 / \sqrt{5})=6$. Hence the maximum is 6 .

